Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Lipid Res ; 65(4): 100532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608546

ABSTRACT

To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Lipoprotein Lipase , Animals , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/blood , Mice , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/immunology , Rats , Receptors, Lipoprotein/metabolism , Receptors, Lipoprotein/genetics , Mice, Knockout
2.
Nat Struct Mol Biol ; 31(3): 465-475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316881

ABSTRACT

The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin ß5) as the essential integrin α/ß pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the ß-propeller domain of ITGAV for integrin αVß5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the ß-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVß5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cell Membrane
3.
J Alzheimers Dis ; 96(4): 1623-1638, 2023.
Article in English | MEDLINE | ID: mdl-38007650

ABSTRACT

BACKGROUND: The cerebrospinal fluid (CSF) levels of tau phosphorylated at threonine 217 (p217tau) or 181 (p181tau), and neurofilament light chain (NfL) are definite biomarkers of tauopathy and neurodegeneration in Alzheimer's disease (AD). OBJECTIVE: To validate their utility in excluding other neurological diseases and age-related changes in clinical settings. METHODS: We developed monoclonal antibodies against p217tau and NfL, established novel ELISAs, and analyzed 170 CSF samples from patients with AD or other neurological diseases. RESULTS: In AD, p217tau is a more specific and abundant CSF component than p181tau. However, CSF NfL levels increase age-dependently and to a greater extent in central and peripheral nervous diseases than in AD. CONCLUSIONS: CSF p217tau correlates better with AD neurodegeneration than other tau-related biomarkers and the major phosphorylated tau species. The clinical usage of NfL as a neurodegeneration biomarker in AD requires exclusion of various central and peripheral neurological diseases.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Intermediate Filaments , Neurofilament Proteins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
4.
Pract Lab Med ; 37: e00337, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781344

ABSTRACT

To investigate the regulation of soluble very low-density lipoprotein receptor (sVLDL-R), which is cleaved mostly from the extracellular domain of VLDL-R II, we generated two rat monoclonal antibodies (mAbs) against human sVLDL-R, and used them to develop a sandwich enzyme-linked immunosorbent assay (ELISA) to measure sVLDL-R levels in human serum or plasma. The ELISA had a linear range from 0.20 ng/mL to 13.02 ng/mL and allowed for the quantification of sVLDL-R in serum and culture cell medium. The coefficient of variation (CV) was less than 10% for both the intra- and inter-assays. The bililubin F, and C, triglyceride (TG), and hemoglobin levels did not affect assay precision. The sVLDL-R concentration was negatively associated with body fat percentage, TG, and HbA1c, suggesting the possibility of obesity and diabetes in middle-aged Japanese women.

5.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871217

ABSTRACT

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Subject(s)
Lipoprotein Lipase , Receptors, Lipoprotein , Antibodies, Monoclonal/metabolism , Capillaries/metabolism , Endothelial Cells/metabolism , Glycocalyx/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins/metabolism , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism , Humans , Animals
6.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824203

ABSTRACT

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Subject(s)
Apolipoprotein A-V , Hypertriglyceridemia , Receptors, Lipoprotein , Animals , Mice , Capillaries/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/blood , Apolipoprotein A-V/genetics
7.
Bioorg Med Chem Lett ; 95: 129471, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37717362

ABSTRACT

To develop novel drugs for treating T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) which are highly malignant hematological tumors, a series of analogs having a polyenylpyrrole structure of natural compounds (rumbrin and auxarconjugatin B) were synthesized and investigated their structure-activity relationships (SAR) of in vitro anti-T-ALL and anti-AML activities. We obtained three findings: (1) introduction of a methyl group at the conjugated polyene terminus enhanced anti-T-ALL activity, (2) analogs with a 3-chloropyrrole moiety had even higher selectivity for T-ALL cells, and (3) some analogs were effective against AML-derived cells. Among the studied compounds, 3-chloro-2-(8-ethoxycarbonylnona-1,3,5,7-tetraenyl) pyrrole 4e was the most promising candidate of T-ALL- and AML-treating drug. This study provides useful structural information for designing novel drugs treating T-ALL and AML.

8.
Cancer Sci ; 114(10): 4032-4040, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37522388

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most frequently occurring cancers in children and is associated with a poor prognosis. Here, we performed large-scale screening of natural compound libraries to identify potential drugs against T-ALL. We identified three low-molecular-weight compounds (auxarconjugatin-B, rumbrin, and lavendamycin) that inhibited the proliferation of the T-ALL cell line CCRF-CEM, but not that of the B lymphoma cell line Raji in a low concentration range. Among them, auxarconjugatin-B and rumbrin commonly contained a polyenyl 3-chloropyrrol in their chemical structure, therefore we chose auxarconjugatin-B for further analyses. Auxarconjugatin-B suppressed the in vitro growth of five human T-ALL cell lines and two T-ALL patient-derived cells, but not that of adult T-cell leukemia patient-derived cells. Cultured normal T cells were several-fold resistant to auxarconjugatin-B. Auxarconjugatin-B and its synthetic analogue Ra#37 depolarized the mitochondrial membrane potential of CCRF-CEM cells within 3 h of treatment. These compounds are promising seeds for developing novel anti-T-ALL drugs.

9.
Adv Sci (Weinh) ; 10(17): e2206584, 2023 06.
Article in English | MEDLINE | ID: mdl-37075745

ABSTRACT

Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.


Subject(s)
Proto-Oncogene Proteins c-myc , Sarcoma, Ewing , Humans , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Cell Line, Tumor , Signal Transduction/genetics , Sarcoma, Ewing/genetics , Chromatin , Epigenesis, Genetic/genetics , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Peptide Elongation Factor 1/therapeutic use , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , DNA Helicases/genetics , DNA Helicases/metabolism
10.
Biochem Biophys Rep ; 33: 101433, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36798850

ABSTRACT

Ischemia-reperfusion injury (IRI) causes massive tissue damage. Renal IRI is the most common type of acute renal injury, and the defects caused by it may progress to chronic kidney disease (CKD). Rodent models of renal IRI, with various patterns, have been used to study the treatment of human kidney injury. A rat model of bilateral IRI, in which the bilateral kidney blood vessels are clamped for 60 min, is widely used, inducing both acute and chronic kidney disease. However, the molecular mechanisms underlying the effects of bilateral IRI on kidney cells have not yet been fully elucidated. This study aimed to perform a whole-transcriptome analysis of the IRI kidney using single-cell RNA sequencing. We found renal parenchymal cells, including those from the proximal tubule, the loop of Henle, and distal tubules, to be damaged by IRI. In addition, we observed significant changes in macrophage population. Our study delineated the detailed cellular and molecular changes that occur in the rat model of bilateral IRI. Collectively, our data and analyses provided a foundation for understanding IRI-related kidney diseases in rat models.

11.
J Atheroscler Thromb ; 30(8): 1070-1082, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36384970

ABSTRACT

Lecithin-cholesterol acyltransferase (LCAT) plays a significant role in the progression from premature to mature high-density lipoprotein (HDL) in circulation. Consequently, primary or secondary LCAT deletion or reduction naturally results in low serum HDL cholesterol levels. Recently, rare cases of acquired HDL deficiency with LCAT autoantibodies have been reported, mainly from Japan, where LCAT autoantibodies of immunoglobulin G (IgG) caused the HDL deficiency. Here to our knowledge, we report for the first time two cases of acquired HDL deficiency caused by IgG4 linked LCAT autoantibodies with or without a high serum IgG4 level. Furthermore, these cases can extend to a new concept of "IgG4 autoimmune disease" from the viewpoint of verifying the serum autoantibody and/or renal histopathology.


Subject(s)
Lecithin Cholesterol Acyltransferase Deficiency , Lecithins , Humans , Sterol O-Acyltransferase , Autoantibodies , Phosphatidylcholine-Sterol O-Acyltransferase , Lipoproteins, HDL , Immunoglobulin G , Cholesterol, HDL
12.
J Atheroscler Thromb ; 30(1): 100-104, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35185060

ABSTRACT

Primary hyperchylomicronemia is characterized by marked hypertriglyceridemia exceeding 1,000 mg/dL. It is caused by dysfunctional mutations in specific genes, namely those for lipoprotein lipase (LPL), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), apolipoprotein C2 (ApoC-II), lipase maturation factor 1 (LMF1), or apolipoprotein A5 (ApoA-V). Importantly, antibodies against LPL or GPIHBP1 have also been reported to induce autoimmune hyperchylomicronemia. The patient was a 46-year-old man diagnosed with immune thrombocytopenia (ITP) at 41 years. At the time, he was administered prednisolone (PSL) and eltrombopag, a thrombopoietin receptor agonist. At 44 years, he suffered from acute myocardial infarction, and PSL was discontinued to avoid enhancing atherogenic risks. He was maintained on eltrombopag monotherapy. After discontinuing PSL, marked hypertriglyceridemia (>3,000 mg/dL) was observed, which did not improve even after a few years of pemafibrate therapy. Upon referral to our clinic, the triglyceride (TG) level was 2,251 mg/dL, ApoC-II was 19.8 mg/dL, LPL was 11.1 ng/mL (0.02-1.5 ng/mL), GPIHBP1 was 47.7 pg/mL (740.0-1,014.0 pg/mL), and anti-GPIHBP1 antibody was detected. The patient was diagnosed to have anti-GPIHBP1 antibody-positive autoimmune hyperchylomicronemia. He was administered PSL 15 mg/day, and TG levels were controlled at approximately 200 mg/dL. Recent studies have reported that patients with anti-GPIHBP1 antibody-induced autoimmune hyperchylomicronemia had concomitant rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Hashimoto's disease, and Graves' disease. We report a rare case of anti-GPIHBP1 antibody-positive autoimmune hyperchylomicronemia with concomitant ITP, which became apparent when PSL was discontinued due to the onset of steroid-induced acute myocardial infarction.


Subject(s)
Hypertriglyceridemia , Purpura, Thrombocytopenic, Idiopathic , Receptors, Lipoprotein , Male , Humans , Middle Aged , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Lipoprotein Lipase/metabolism , Apolipoprotein C-II/genetics , Apolipoprotein C-II/metabolism , Hypertriglyceridemia/genetics
13.
Development ; 149(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36245218

ABSTRACT

Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1-Ibsp+Sparcl1+ and Plap-1-Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.


Subject(s)
Periodontal Ligament , Transcriptome , Animals , Calcium-Binding Proteins/metabolism , Cell Differentiation/genetics , Extracellular Matrix Proteins/metabolism , Mice , Osteoblasts , RNA/metabolism
14.
iScience ; 25(11): 105252, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36281455

ABSTRACT

Currently, no mouse models manifest calcification and thrombus formation, which is frequently associated with human atherosclerosis. We demonstrated that lack of Favine/CCDC3 in apoE knockout mice accelerated atherosclerosis accompanied by large cholesterol crystals and calcification, and also promoted thrombus formation in the left ventricle and arteries. Circulating Favine was detectable in WT mouse plasma. RNA-sequencing analysis of aortae in DKO mice showed similar gene expression patterns of human atherosclerosis with unstable and vulnerable plaques. Importantly, human FAVINE mRNA expressions were lower in atheroma plaque than in adjacent intact aortic tissue and decreased with the progression of atherosclerosis. Pathway analysis of aortae in DKO mice suggested the decrease of the MEF2C-KLF2-mediated transcriptional pathway. Favine insufficiency and its attenuated downstream pathways may increase atherosclerosis progression with calcification and thrombus, which have not previously been fully modeled in experimental animals. Favine and its downstream pathways may have therapeutic potential for atherosclerosis.

16.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35229724

ABSTRACT

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1's 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1's AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL's basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.


Subject(s)
Lipoprotein Lipase , Receptors, Lipoprotein , Animals , Capillaries/metabolism , Endothelial Cells/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Static Electricity
17.
Leukemia ; 36(1): 100-110, 2022 01.
Article in English | MEDLINE | ID: mdl-34373586

ABSTRACT

Sphingolipids and their metabolic pathways have been implicated in disease development and therapeutic response; however, the detailed mechanisms remain unclear. Using a sphingolipid network focused CRISPR/Cas9 library screen, we identified an endoplasmic reticulum (ER) enzyme, 3-Ketodihydrosphingosine reductase (KDSR), to be essential for leukemia cell maintenance. Loss of KDSR led to apoptosis, cell cycle arrest, and aberrant ER structure. Transcriptomic analysis revealed the indispensable role of KDSR in maintaining the unfolded protein response (UPR) in ER. High-density CRISPR tiling scan and sphingolipid mass spectrometry pinpointed the critical role of KDSR's catalytic function in leukemia. Mechanistically, depletion of KDSR resulted in accumulated 3-ketodihydrosphingosine (KDS) and dysregulated UPR checkpoint proteins PERK, ATF6, and ATF4. Finally, our study revealed the synergism between KDSR suppression and pharmacologically induced ER-stress, underscoring a therapeutic potential of combinatorial targeting sphingolipid metabolism and ER homeostasis in leukemia treatment.


Subject(s)
Alcohol Oxidoreductases/metabolism , Endoplasmic Reticulum/physiology , Homeostasis , Leukemia/pathology , Sphingolipids/metabolism , Unfolded Protein Response , Alcohol Oxidoreductases/genetics , Apoptosis , Cell Proliferation , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Leukemia/genetics , Leukemia/metabolism , Tumor Cells, Cultured
18.
Nat Commun ; 12(1): 4063, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210975

ABSTRACT

Identification of novel functional domains and characterization of detailed regulatory mechanisms in cancer-driving genes is critical for advanced cancer therapy. To date, CRISPR gene editing has primarily been applied to defining the role of individual genes. Recently, high-density mutagenesis via CRISPR tiling of gene-coding exons has been demonstrated to identify functional regions in genes. Furthermore, breakthroughs in combining CRISPR library screens with single-cell droplet RNA sequencing (sc-RNAseq) platforms have revealed the capacity to monitor gene expression changes upon genetic perturbations at single-cell resolution. Here, we present "sc-Tiling," which integrates a CRISPR gene-tiling screen with single-cell transcriptomic and protein structural analyses. Distinct from other reported single-cell CRISPR screens focused on observing gene function and gene-to-gene/enhancer-to-gene regulation, sc-Tiling enables the capacity to identify regulatory mechanisms within a gene-coding region that dictate gene activity and therapeutic response.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neoplasms/genetics , Phenotype , Drug Screening Assays, Antitumor , Gene Editing , Gene Expression Regulation, Neoplastic , Genetic Testing , Genome, Human , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones , Humans , Models, Molecular , Mutagenesis , Transcriptome
19.
Cell Mol Gastroenterol Hepatol ; 12(2): 547-566, 2021.
Article in English | MEDLINE | ID: mdl-33862275

ABSTRACT

BACKGROUND & AIMS: Proper resolution of inflammation is essential to maintaining homeostasis, which is important as a dysregulated inflammatory response has adverse consequences, even being regarded as a hallmark of cancer. However, our picture of dynamic changes during inflammation remains far from comprehensive. METHODS: Here we used single-cell transcriptomics to elucidate changes in distinct cell types and their interactions in a mouse model of chemically induced colitis. RESULTS: Our analysis highlights the stromal cell population of the colon functions as a hub with dynamically changing roles over time. Importantly, we found that Serpina3n, a serine protease inhibitor, is specifically expressed in stromal cell clusters as inflammation resolves, interacting with a potential target, elastase. Indeed, genetic ablation of the Serpina3n gene delays resolution of induced inflammation. Furthermore, systemic Serpina3n administration promoted the resolution of inflammation, ameliorating colitis symptoms. CONCLUSIONS: This study provides a comprehensive, single-cell understanding of cell-cell interactions during colorectal inflammation and reveals a potential therapeutic target that leverages inflammation resolution.


Subject(s)
Acute-Phase Proteins/metabolism , Colitis/genetics , Colitis/pathology , Inflammation/genetics , Inflammation/pathology , Serpins/metabolism , Single-Cell Analysis , Transcriptome/genetics , Animals , Cell Communication , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Genetic Predisposition to Disease , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Phenotype , RNA-Seq , Risk Factors , Stromal Cells/metabolism
20.
Bioorg Med Chem Lett ; 37: 127837, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33581250

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a hardly curable disease with a high relapse rate. 20 analogs were synthesized based on the structures of two kinds of fungi-derived polyenylpyrrole products (rumbrin (1) and auxarconjugatin-B (2)) to suppress the growth of T-ALL-derived cell line CCRF-CEM and tested for growth-inhibiting activity. The octatetraenylpyrrole analog gave an IC50 of 0.27 µM in CCRF-CEM cells, while it did not affect Burkitt lymphoma-derived cell line Raji and the cervical cancer cell line HeLa, or the oral cancer cell line HSC-3 (IC50 > 10 µM). This compound will be a promising compound for developing T-ALL-specific drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Polyenes/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrroles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polyenes/chemical synthesis , Polyenes/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...